Research Article | | Peer-Reviewed

Advanced Materials for Enhanced Computing Performance: Beyond Silicon Paradigms in High-performance Computing Systems

Received: 8 September 2025     Accepted: 25 September 2025     Published: 26 November 2025
Views:       Downloads:
Abstract

The exponential growth in computational demands has reached a critical inflection point where traditional silicon-based semiconductors face fundamental physical and thermal limitations. This comprehensive analysis examines the transformative potential of advanced materials—specifically silicon carbide (SiC), gallium nitride (GaN), and emerging graphene-based semiconductors—in overcoming performance bottlenecks that constrain contemporary computing systems. Through systematic evaluation of material properties, manufacturing feasibility, and performance characteristics, this research demonstrates that wide bandgap semiconductors offer superior thermal conductivity, electron mobility, and power efficiency compared to conventional silicon. The investigation synthesizes current literature to establish key findings: SiC exhibits threefold improvements in thermal conductivity (490 W/m·K versus silicon's 148 W/m·K) while maintaining superior electrical properties including higher breakdown voltage and electron saturation velocity; GaN demonstrates exceptional high-frequency performance capabilities with electron mobility exceeding 2000 cm2/V·s, enabling switching frequencies above 100 MHz; and graphene presents revolutionary potential with thermal conductivity exceeding 5000 W/m·K and electron mobility approaching 15,000 cm2/V·s, though significant bandgap engineering challenges remain. However, manufacturing analysis reveals substantial obstacles including processing costs 3-10 times higher than silicon equivalents, supply chain vulnerabilities particularly for gallium-based materials, and immature production processes, despite the silicon carbide market's projected growth from USD 802.93 million in 2024 to USD 2614.24 million by 2031 indicating strong industry confidence. The research concludes that hybrid integration approaches represent the most pragmatic pathway for advanced material adoption, enabling gradual technology transition while minimizing economic risks by combining advanced materials' performance advantages in specialized applications with silicon's cost-effectiveness for general computing functions, facilitating incremental adoption that scales with manufacturing capability development and market demand.

Published in World Journal of Materials Science and Technology (Volume 2, Issue 2)
DOI 10.11648/j.wjmst.20250202.12
Page(s) 31-45
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Silicon Carbide, Gallium Nitride, Wide Bandgap Semiconductors, Thermal Management, Computing Performance, Moore's Law, Semiconductor Materials

References
[1] Alves, L. F., Gomes, R. C., Lefranc, P., Pegado, R. D. A., Jeannin, P. O., Luciano, B. A., & Rocha, F. V. (2017, November). SIC power devices in power electronics: An overview. In 2017 Brazilian Power Electronics Conference (COBEP) (pp. 1-8). IEEE,
[2] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M.,… & Eastman, L. F. (1999). Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics, 85(6), 3222-3233.
[3] Bagam, N., Shiramshetty, S. K., Mothey, M., Kola, H. G., Annam, S. N., & Bussa, S. (2024). Advancements in Quality Assurance and Testing in Data Analytics. Journal of Computational Analysis & Applications, 33(8).
[4] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907.
[5] Baliga, B. J. (2013). Fundamentals of power semiconductor devices. Springer Science & Business Media.
[6] Balkas, E. (2024, December). Revolutionizing Power Electronics with Silicon Carbide to Pioneer Sustainable Solutions. In 2024 IEEE International Electron Devices Meeting (IEDM) (pp. 1-5). IEEE. Balkas, E. (2024, December). Revolutionizing Power Electronics with Silicon Carbide to Pioneer Sustainable Solutions. In 2024 IEEE International Electron Devices Meeting (IEDM) (pp. 1-5). IEEE.
[7] Bar-Cohen, A., Matin, K., & Narumanchi, S. (2015). Nanothermal interface materials: technology review and recent results. Journal of Electronic Packaging, 137(4), 040803.
[8] Bhargava, G., Rath, P. K., & Majumdar, S. (2022, December). Gan-based class-f power amplifier for 5g applications. In 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON) (pp. 1444-1449). IEEE
[9] Bohr, M. (2009). A 30 year retrospective on Dennard's MOSFET scaling paper. IEEE Solid-State Circuits Society Newsletter, 12(1), 11-13.
[10] Ceruzzi, P. E. (2003). A history of modern computing. MIT Press.
[11] CAO, Y. (2025). Risk management for semiconductor manufacturing equipment suppliers within rapid changing international environment: An empirical study.
[12] Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G. (2021). A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things Journal, 8(18), 13849-13875.
[13] Chen, M., Wang, H., Pan, D., Wang, X., & Blaabjerg, F. (2020). Thermal characterization of silicon carbide MOSFET module suitable for high-temperature computationally efficient thermal-profile prediction. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(4), 3947-3958.
[14] Chen, W. T., Khan, M. S., & Iftikhar, R. (2021). Value creation analysis: Semiconductor intellectual property business models and dynamic capabilities. IEEE Transactions on Engineering Management, 70(1), 55-66.
[15] Chen, Z., & Huang, A. Q. (2024). Extreme high efficiency enabled by silicon carbide (SiC) power devices. Materials Science in Semiconductor Processing, 172, 108052.
[16] Chen, J., Yan, L., Wang, S., & Zheng, W. (2024). Deep reinforcement learning-based automatic test case generation for hardware verification. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 6(1), 409-429.
[17] Childress, L., & Hanson, R. (2013). Diamond NV centers for quantum computing and quantum networks. MRS Bulletin, 38(2), 134-138.
[18] Chung, J. W., Hoke, W. E., Chumbes, E. M., & Palacios, T. (2010). AlGaN/GaN HEMT with 300-GHz fMAX. IEEE Electron Device Letters, 31(3), 195-197.
[19] Columbus Chinnappan, C., Thanaraj Krishnan, P., Elamaran, E., Arul, R., & Sunil Kumar, T. (2025). Quantum Computing: Foundations, Architecture and Applications. Engineering Reports, 7(8), e70337.
[20] Cooper, J. A., Melloch, M. R., Singh, R., Agarwal, A., & Palmour, J. W. (2002). Status and prospects for SiC power MOSFETs. IEEE Transactions on Electron Devices, 49(4), 658-664.
[21] Crawford, S. E., Shugayev, R. A., Paudel, H. P., Lu, P., Syamlal, M., Ohodnicki, P. R.,... & Duan, Y. (2021). Quantum sensing for energy applications: Review and perspective. Advanced Quantum Technologies, 4(8), 2100049.
[22] Das, S., Marlino, L. D., & Armstrong, K. O. (2017). Wide bandgap semiconductor opportunities in power electronics (No. ORNL/TM-2017/702). Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).
[23] Das, S., Ghosh, S., Zheng, Y., Zhang, Z., Sun, Y., Schranghamer, T.,... & Yang, Y. (2023). Monolithic and heterogeneous three-dimensional (3D) integration of two-dimensional (2D) materials using dense vias.
[24] Davis, R. F. (1991). III-V nitrides for electronic and optoelectronic applications. Proceedings of the IEEE, 79(5), 702-712.
[25] De Leon, N. P., Itoh, K. M., Kim, D., Mehta, K. K., Northup, T. E., Paik, H.,... & Steuerman, D. W. (2021). Materials challenges and opportunities for quantum computing hardware. Science, 372(6539), eabb2823.
[26] Deng, J., Wang, R. Z., & Han, G. Y. (2011). A review of thermally activated cooling technologies for combined cooling, heating and power systems. Progress in energy and combustion science, 37(2), 172-203.
[27] Dennard, R. H., Gaensslen, F. H., Yu, H. N., Rideout, V. L., Bassous, E., & LeBlanc, A. R. (2003). Design of ion-implanted MOSFET's with very small physical dimensions. IEEE Journal of solid-state circuits, 9(5), 256-268.
[28] Dhameliya, N. (2022). Power Electronics Innovations: Improving Efficiency and Sustainability in Energy Systems. Asia Pacific Journal of Energy and Environment, 9(2), 71-80.
[29] Diaz, A., Schmidt, S., Glaser, S., & Makoschitz, M. (2022). A “life cycle thinking” approach to assess differences in the energy use of SiC vs. Si power semiconductors. In # PLACEHOLDER_PARENT_METADATA_VALUE#.
[30] Di Gioia, G. (2021). GaN Schottky Diodes for THz Generation THESE (Doctoral dissertation, Université Paris Sud).
[31] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., & Burger, D. (2011, June). Dark silicon and the end of multicore scaling. In Proceedings of the 38th annual international symposium on Computer architecture (pp. 365-376).
[32] Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A.,... & Colombo, L. (2014). Electronics based on two-dimensional materials. Nature nanotechnology, 9(10), 768-779.
[33] Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of cleaner Production, 137, 1573-1587.
[34] Garimella, S. V., Fleischer, A. S., Murthy, J. Y., Keshavarzi, A., Prasher, R., Patel, C.,... & Raad, P. E. (2008). Thermal challenges in next-generation electronic systems. IEEE Transactions on Components and Packaging Technologies, 31(4), 801-815.
[35] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191.
[36] George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews, 110(1), 111-131.
[37] Georgia Institute of Technology. (2024). Researchers Create First Functional Semiconductor Made From Graphene. Retrieved on 1 September 2025 from
[38] Grindley, P. C., & Teece, D. J. (1997). Managing intellectual capital: licensing and cross-licensing in semiconductors and electronics. California management review, 39(2), 8-41.
[39] Guo, D. (2024). Neuromorphic computing of SiC based memristor (Doctoral dissertation, University of Southampton).
[40] Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical review letters, 98(20), 206805.
[41] Higham, E. (2014, October). GaN technology in base stations-why and when?. In 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (pp. 1-4). IEEE.
[42] Hill, I., Chanawala, P., Singh, R., Sheikholeslam, S. A., & Ivanov, A. (2021). CMOS reliability from past to future: A survey of requirements, trends, and prediction methods. IEEE Transactions on Device and Materials Reliability, 22(1), 1-18.
[43] Horowitz, K., Remo, T., & Reese, S. (2017). A manufacturing cost and supply chain analysis of SiC power electronics applicable to medium-voltage motor drives (No. NREL/TP-6A20-67694). National Renewable Energy Lab.(NREL), Golden, CO (United States).
[44] hNguyen, H. D., & Steele, G. C. (2015). An Overview of SBIR Phase 2 Materials Structures for Extreme Environments.
[45] Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & Cao, J. (2023). Edge computing with artificial intelligence: A machine learning perspective. ACM Computing Surveys, 55(9), 1-35.
[46] Indiveri, G., & Liu, S. C. (2015). Memory and information processing in neuromorphic systems. Proceedings of the IEEE, 103(8), 1379-1397.
[47] James, D. (2017). Iedm 2017: intel’s 10nm platform process. Solid state technology.
[48] Jin, H., Qin, L., Zhang, L., Zeng, X., & Yang, R. (2016). Review of wide band-gap semiconductors technology. In MATEC Web of Conferences (Vol. 40, p. 01006). EDP Sciences.
[49] Jones, E. A., Wang, F. F., & Costinett, D. (2016). Review of commercial GaN power devices and GaN-based converter design challenges. IEEE journal of emerging and selected topics in power electronics, 4(3), 707-719.
[50] Kamiński, M., Król, K., Kwietniewski, N., Myśliwiec, M., Sochacki, M., Stonio, B.,... & Strójwąs, A. (2024). The Overview of Silicon Carbide Technology: Status, Challenges, Key Drivers, and Product Roadmap. Materials, 18(1), 12.
[51] Kazem, H. A., Chaichan, M. T., Al-Waeli, A. H., Jarimi, H., Ibrahim, A., & Sopian, K. (2022). Effect of temperature on the electrical and thermal behaviour of a photovoltaic/thermal system cooled using SiC nanofluid: an experimental and comparison study. Sustainability, 14(19), 11897.
[52] Kimoto, T., & Cooper, J. A. (2014). Fundamentals of silicon carbide technology: Growth, characterization, devices, and applications. John Wiley & Sons.
[53] Kittel, C., & McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons.
[54] Kou, H., Lu, J., & Li, Y. (2014). High‐strength and high‐ductility nanostructured and amorphous metallic materials. Advanced Materials, 26(31), 5518-5524.
[55] Kuchta, D., Gryglewski, D., & Wojtasiak, W. (2020). A GaN HEMT amplifier design for phased array radars and 5G new radios. Micromachines, 11(4), 398.
[56] Lamsal, R. R., Devkota, A., & Bhusal, M. S. (2023). Navigating global challenges: the crucial role of semiconductors in advancing globalization. Journal of The Institution of Engineers (India): Series B, 104(6), 1389-1399.
[57] La Via, F., Alquier, D., Giannazzo, F., Kimoto, T., Neudeck, P., Ou, H.,... & Tudisco, S. (2023). Emerging SiC applications beyond power electronic devices. Micromachines, 14(6), 1200.
[58] Le, T. V., Kebede Reda, A., & Samanthapudi, N. (2025). Semiconductors Industry: the Current Status, Challenges, and Suggestions for Promoting Manufacturing in the US. Nemisa, Semiconductors Industry: the Current Status, Challenges, and Suggestions for Promoting Manufacturing in the US (May 01, 2025).
[59] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
[60] Li, E., Zeng, L., Zhou, Z., & Chen, X. (2019). Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE transactions on wireless communications, 19(1), 447-457.
[61] Liu, K. T., & Chen, C. H. (2022). Formulation of research and development strategy by analysing patent portfolios of key players the semiconductor industry according to patent strength and technical function. World Patent Information, 70, 102125.
[62] Liu, Y., Wang, Y., Wang, S., Li, K., Zhang, T., Zhang, Q.,... & Mai, Z. (2024, July). Analysis and characterization techniques for wide band gap semiconductor materials. In 2024 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (pp. 1-5). IEEE.
[63] Loncarski, J., Hussain, H. A., & Bellini, A. (2023). Efficiency, cost, and volume comparison of SiC-based and IGBT-based full-scale converter in PMSG wind turbine. Electronics, 12(2), 385.
[64] Lu, Z. (2024). Advanced GaN HEMT device modeling and high efficiency mmWave power amplifier design for beyond 5G application (Doctoral dissertation, Nanyang Technological University).
[65] Mack, C. (2011). Fifty years of Moore's law. IEEE Transactions on Semiconductor Manufacturing, 24(2), 202-207.
[66] Madika, B., Saha, A., Kang, C., Buyantogtokh, B., Agar, J., Wolverton, C. M.,... & Hong, S. (2025). Artificial Intelligence for Materials Discovery, Development, and Optimization. ACS nano.
[67] Makiyama, K. O. Z. O., Yoshida, S. H. I. G. E. K. I., & Nakata, K. (2023). High-Power GaN HEMT for High-Frequency Amplifiers and Its Future Technologies. Osaka, Japan.
[68] Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629-1636.
[69] Microchip. (2024). The Rise of Silicon Carbide in Power Electronics: Onsemi is Meeting the DemandOnsemi silicon carbide. Retrieved on 1 September 2025 from
[70] Mir, S., Vaishampayan, A., & Dhawan, N. (2022). A review on recycling of end-of-life light-emitting diodes for metal recovery. Jom, 74(2), 599-611.
[71] Mishra, U. K., Parikh, P., & Wu, Y. F. (2002). AlGaN/GaN HEMTs-an overview of device operation and applications. Proceedings of the IEEE, 90(6), 1022-1031.
[72] Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114-117.
[73] Ng, W. L., Goh, G. L., Goh, G. D., Ten, J. S. J., & Yeong, W. Y. (2024). Progress and opportunities for machine learning in materials and processes of additive manufacturing. Advanced Materials, 36(34), 2310006.
[74] Niskanen, K. (2020). Coupled radiation and aging effects on wide bandgap power devices (Doctoral dissertation, Université Montpellier).
[75] Ohenhen, P. E., Chidolue, O., Umoh, A. A., Ngozichukwu, B., Fafure, A. V., Ilojianya, V. I., & Ibekwe, K. I. (2024). Sustainable cooling solutions for electronics: A comprehensive review: Investigating the latest techniques and materials, their effectiveness in mechanical applications, and associated environmental benefits. World Journal of Advanced Research and Reviews, 21(01), 957-972.
[76] Pearton, S. J., Zolper, J. C., Shul, R. J., & Ren, F. (1999). GaN: Processing, defects, and devices. Journal of Applied Physics, 86(1), 1-78.
[77] Pedram, M., & Nazarian, S. (2006). Thermal modeling, analysis, and management in VLSI circuits: Principles and methods. Proceedings of the IEEE, 94(8), 1487-1501.
[78] Peng, L., Zhang, Z., & Zhang, G. (2023). Efficient GaN-on-Si power amplifier design using analytical and numerical optimization methods for 24–30 GHz 5G applications. Electronics, 12(7), 1750.
[79] Piccione, G. G. (2023). Thermal management characterization for 4H-SiC power devices: modeling, optimization, and analysis.
[80] Pimpale, S. (2024). Next-Generation Power Electronics for Electric Vehicles: The Role of Wide Bandgap Semiconductors (SiC & GaN).
[81] Plathottam, S. J., Rzonca, A., Lakhnori, R., & Iloeje, C. O. (2023). A review of artificial intelligence applications in manufacturing operations. Journal of Advanced Manufacturing and Processing, 5(3), e10159.
[82] Radwan, M. (2023). Life Cycle Assessment of Power Semiconductor Module Manufacturing.
[83] Radwan, M., Paulasto-Kröckel, M., & Vuorinen, V. (2025, April). Cradle-to-Gate Life Cycle Assessment of Si IGBT and SiC MOSFET Power Modules. In 2025 IEEE Conference on Technologies for Sustainability (SusTech) (pp. 1-5). IEEE.
[84] Rafin, S. S. H., Ahmed, R., Haque, M. A., Hossain, M. K., Haque, M. A., & Mohammed, O. A. (2023). Power electronics revolutionized: A comprehensive analysis of emerging wide and ultrawide bandgap devices. Micromachines, 14(11), 2045.
[85] Rakholia, R., Suárez-Cetrulo, A. L., Singh, M., & Carbajo, R. S. (2024). Advancing Manufacturing Through Artificial Intelligence: Current Landscape, Perspectives, Best Practices, Challenges and Future Direction. IEEE Access.
[86] Research and Markets. (2024). Silicon Carbide - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2024 - 2029). Retrieved on 1 September 2025 from
[87] Ribeiro, M. C. S., Fiúza, A., Ferreira, A., Dinis, M. D. L., Meira Castro, A. C., Meixedo, J. P., & Alvim, M. R. (2016). Recycling approach towards sustainability advance of composite materials’ industry. Recycling, 1(1), 178-193.
[88] Roesch, W. J. (2006). Historical review of compound semiconductor reliability. Microelectronics Reliability, 46(8), 1218-1227.
[89] Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and sustainable energy reviews, 74, 590-601.
[90] Seal, S., & Mantooth, H. A. (2017). High performance silicon carbide power packaging—Past trends, present practices, and future directions. Energies, 10(3), 341.
[91] Setera, B., & Christou, A. (2021). Challenges of overcoming defects in wide bandgap semiconductor power electronics. Electronics, 11(1), 10.
[92] Shahzad, K., Mardare, A. I., & Hassel, A. W. (2024). Accelerating materials discovery: combinatorial synthesis, high-throughput characterization, and computational advances. Science and Technology of Advanced Materials: Methods, 4(1), 2292486.
[93] Sharma, S., Gupta, R., Patel, A., & Kumar, V. (2024). Beyond Silicon: Emerging Materials and Technologies in Semiconductor Innovation. Int. J. Tech. Res. Sci, 9, 211. DOI Number:
[94] Sheelam, G. K. (2025). Advanced Communication Systems and Next-Gen Circuit Design: Intelligent Integration of Electronics, Wireless Infrastructure, and Smart Computing Systems. Deep Science Publishing.
[95] Shen, Z. J., Roshandeh, A. M., Miao, Z., & Sabui, G. (2015, June). Ultrafast autonomous solid state circuit breakers for shipboard DC power distribution. In 2015 IEEE Electric Ship Technologies Symposium (ESTS) (pp. 299-305). IEEE.
[96] Shuvo, M. M. H., Islam, S. K., Cheng, J., & Morshed, B. I. (2022). Efficient acceleration of deep learning inference on resource-constrained edge devices: A review. Proceedings of the IEEE, 111(1), 42-91.
[97] Singh, A., Kaushik, N., & Pandey, P. K. (2025). Building Better Defence: Overcoming Challenges in Product Development through Supplier Integration in India: OVERCOMING CHALLENGES IN PRODUCT DEVELOPMENT BY SUPPLIER INTEGRATION. Journal of Scientific & Industrial Research (JSIR), 84(1), 82-98.
[98] Slack, G. A. (1973). Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 34(2), 321-335.
[99] Spejo, L. B., Thekemuriyil, T., & Minamisawa, R. A. (2024). Estimation of Energy-Saving Potential Using Commercial SiC Power Converters. Energies, 17(18), 4570.
[100] Strubell, E., Ganesh, A., & McCallum, A. (2020, April). Energy and policy considerations for modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 09, pp. 13693-13696)
[101] Sun, R., Lai, J., Chen, W., & Zhang, B. (2020). GaN power integration for high frequency and high efficiency power applications: A review. Ieee Access, 8, 15529-15542.
[102] Suthar, A. N., Venkataramanaiah, J., & Suresh, Y. (2025). Conventional, wide-bandgap, and hybrid power converters: A comprehensive review. Renewable and Sustainable Energy Reviews, 213, 115419.
[103] Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John Wiley & Sons.
[104] Tang, G., chong Chai, T., & Zhang, X. (2018). Thermal optimization and characterization of SiC-based high power electronics packages with advanced thermal design. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(5), 854-863.
[105] Thraskias, C. A., Lallas, E. N., Neumann, N., Schares, L., Offrein, B. J., Henker, R.,... & Tomkos, I. (2018). Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications. IEEE Communications Surveys & Tutorials, 20(4), 2758-2783.
[106] Triebl, O. (2012). Reliability issues in high-voltage semiconductor devices (Doctoral dissertation, Technische Universität Wien).
[107] Tritt, T. M. (2005). Thermal conductivity: Theory, properties, and applications. Springer Science & Business Media.
[108] Tsao, J. Y., Chowdhury, S., Hollis, M. A., Jena, D., Johnson, N. M., Jones, K. A.,... & Dupuis, R. D. (2018). Ultrawide‐bandgap semiconductors: Research opportunities and challenges. Advanced Electronic Materials, 4(1), 1600501.
[109] Upadhyay, D., Deliri, S., Mattsson, A., Peltoniemi, P., & Aarniovuori, L. (2025). Review on Silicon Carbide based High-Fundamental Frequency Inverters for High-Speed Drives.
[110] U. S. Department of Energy. (2023). Critical materials strategy report: Ensuring supply chain resilience for clean energy technologies. DOE Office of Policy.
[111] Varley, J. B., Shen, B., & Higashiwaki, M. (2022). Wide bandgap semiconductor materials and devices. Journal of Applied Physics, 131(23).
[112] Vauche, L., Guillemaud, G., Lopes Barbosa, J. C., & Di Cioccio, L. (2024). Cradle-to-gate life cycle assessment (LCA) of GaN power semiconductor device. Sustainability, 16(2), 901.
[113] Waldrop, M. M. (2016). The chips are down for Moore's law. Nature News, 530(7589), 144.
[114] Wang, Y., Ding, Y., & Yin, Y. (2022). Reliability of wide band gap power electronic semiconductor and packaging: A review. Energies, 15(18), 6670.
[115] Wicht, B. (2024). Design of Power Management Integrated Circuits. John Wiley & Sons.
[116] Weinstein, J. (2023). Semiconductors and the Calculation of the Balance of Power.
[117] Wohlleben, W., Persson, M., Suarez-Merino, B., Baun, A., Di Battista, V., Dekkers, S.,... & Haase, A. (2024). Advanced materials earliest assessment (AMEA). Environmental Science: Nano, 11(7), 2948-2967.
[118] Woldegiorgis, D., Hossain, M. M., Saadatizadeh, Z., Wei, Y., & Mantooth, H. A. (2022). Hybrid Si/SiC switches: A review of control objectives, gate driving approaches and packaging solutions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2), 1737-1753
[119] Wort, C. J., & Balmer, R. S. (2008). Diamond as an electronic material. Materials Today, 11(1-2), 22-28.
[120] Wu, S., Li, H., Futaba, D. N., Chen, G., Chen, C., Zhou, K.,... & Xu, M. (2022). Structural design and fabrication of multifunctional nanocarbon materials for extreme environmental applications. Advanced Materials, 34(52), 2201046.
[121] Xiong, W., Wu, D. D., & Yeung, J. H. (2025). Semiconductor supply chain resilience and disruption: Insights, mitigation, and future directions. International Journal of Production Research, 63(9), 3442-3465.
[122] Xiouras, C., Cameli, F., Quillo, G. L., Kavousanakis, M. E., Vlachos, D. G., & Stefanidis, G. D. (2022). Applications of artificial intelligence and machine learning algorithms to crystallization. Chemical Reviews, 122(15), 13006-13042.
[123] Xun, Q., Xun, B., Li, Z., Wang, P., & Cai, Z. (2017). Application of SiC power electronic devices in secondary power source for aircraft. Renewable and Sustainable Energy Reviews, 70, 1336-1342.
[124] Yole Development. (2023). Wide bandgap power semiconductors market and technology report 2023. Yole Intelligence. Retrieved on 1 September 2025 from
[125] Ye, B., Liu, X., Wu, C., Yan, W., & Pi, X. (2025). Synaptic devices based on silicon carbide for neuromorphic computing. Journal of Semiconductors, 46(2), 021403.
[126] Yuan, X., Laird, I., & Walder, S. (2020). Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters. IEEE Transactions on Power Electronics, 36(4), 3925-3945.
[127] Zhang, W., Zhao, F., & Liu, Z. (2025). How Does China Explore the Synergetic Development of Automotive Industry and Semiconductor Industry with the Opportunity for Industrial Transformation?. Sustainability, 17(4), 1753.
Cite This Article
  • APA Style

    Madisa, M. K. (2025). Advanced Materials for Enhanced Computing Performance: Beyond Silicon Paradigms in High-performance Computing Systems. World Journal of Materials Science and Technology, 2(2), 31-45. https://doi.org/10.11648/j.wjmst.20250202.12

    Copy | Download

    ACS Style

    Madisa, M. K. Advanced Materials for Enhanced Computing Performance: Beyond Silicon Paradigms in High-performance Computing Systems. World J. Mater. Sci. Technol. 2025, 2(2), 31-45. doi: 10.11648/j.wjmst.20250202.12

    Copy | Download

    AMA Style

    Madisa MK. Advanced Materials for Enhanced Computing Performance: Beyond Silicon Paradigms in High-performance Computing Systems. World J Mater Sci Technol. 2025;2(2):31-45. doi: 10.11648/j.wjmst.20250202.12

    Copy | Download

  • @article{10.11648/j.wjmst.20250202.12,
      author = {Mayibongwe Kagiso Madisa},
      title = {Advanced Materials for Enhanced Computing Performance: Beyond Silicon Paradigms in High-performance Computing Systems
    },
      journal = {World Journal of Materials Science and Technology},
      volume = {2},
      number = {2},
      pages = {31-45},
      doi = {10.11648/j.wjmst.20250202.12},
      url = {https://doi.org/10.11648/j.wjmst.20250202.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjmst.20250202.12},
      abstract = {The exponential growth in computational demands has reached a critical inflection point where traditional silicon-based semiconductors face fundamental physical and thermal limitations. This comprehensive analysis examines the transformative potential of advanced materials—specifically silicon carbide (SiC), gallium nitride (GaN), and emerging graphene-based semiconductors—in overcoming performance bottlenecks that constrain contemporary computing systems. Through systematic evaluation of material properties, manufacturing feasibility, and performance characteristics, this research demonstrates that wide bandgap semiconductors offer superior thermal conductivity, electron mobility, and power efficiency compared to conventional silicon. The investigation synthesizes current literature to establish key findings: SiC exhibits threefold improvements in thermal conductivity (490 W/m·K versus silicon's 148 W/m·K) while maintaining superior electrical properties including higher breakdown voltage and electron saturation velocity; GaN demonstrates exceptional high-frequency performance capabilities with electron mobility exceeding 2000 cm2/V·s, enabling switching frequencies above 100 MHz; and graphene presents revolutionary potential with thermal conductivity exceeding 5000 W/m·K and electron mobility approaching 15,000 cm2/V·s, though significant bandgap engineering challenges remain. However, manufacturing analysis reveals substantial obstacles including processing costs 3-10 times higher than silicon equivalents, supply chain vulnerabilities particularly for gallium-based materials, and immature production processes, despite the silicon carbide market's projected growth from USD 802.93 million in 2024 to USD 2614.24 million by 2031 indicating strong industry confidence. The research concludes that hybrid integration approaches represent the most pragmatic pathway for advanced material adoption, enabling gradual technology transition while minimizing economic risks by combining advanced materials' performance advantages in specialized applications with silicon's cost-effectiveness for general computing functions, facilitating incremental adoption that scales with manufacturing capability development and market demand.
    },
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Advanced Materials for Enhanced Computing Performance: Beyond Silicon Paradigms in High-performance Computing Systems
    
    AU  - Mayibongwe Kagiso Madisa
    Y1  - 2025/11/26
    PY  - 2025
    N1  - https://doi.org/10.11648/j.wjmst.20250202.12
    DO  - 10.11648/j.wjmst.20250202.12
    T2  - World Journal of Materials Science and Technology
    JF  - World Journal of Materials Science and Technology
    JO  - World Journal of Materials Science and Technology
    SP  - 31
    EP  - 45
    PB  - Science Publishing Group
    UR  - https://doi.org/10.11648/j.wjmst.20250202.12
    AB  - The exponential growth in computational demands has reached a critical inflection point where traditional silicon-based semiconductors face fundamental physical and thermal limitations. This comprehensive analysis examines the transformative potential of advanced materials—specifically silicon carbide (SiC), gallium nitride (GaN), and emerging graphene-based semiconductors—in overcoming performance bottlenecks that constrain contemporary computing systems. Through systematic evaluation of material properties, manufacturing feasibility, and performance characteristics, this research demonstrates that wide bandgap semiconductors offer superior thermal conductivity, electron mobility, and power efficiency compared to conventional silicon. The investigation synthesizes current literature to establish key findings: SiC exhibits threefold improvements in thermal conductivity (490 W/m·K versus silicon's 148 W/m·K) while maintaining superior electrical properties including higher breakdown voltage and electron saturation velocity; GaN demonstrates exceptional high-frequency performance capabilities with electron mobility exceeding 2000 cm2/V·s, enabling switching frequencies above 100 MHz; and graphene presents revolutionary potential with thermal conductivity exceeding 5000 W/m·K and electron mobility approaching 15,000 cm2/V·s, though significant bandgap engineering challenges remain. However, manufacturing analysis reveals substantial obstacles including processing costs 3-10 times higher than silicon equivalents, supply chain vulnerabilities particularly for gallium-based materials, and immature production processes, despite the silicon carbide market's projected growth from USD 802.93 million in 2024 to USD 2614.24 million by 2031 indicating strong industry confidence. The research concludes that hybrid integration approaches represent the most pragmatic pathway for advanced material adoption, enabling gradual technology transition while minimizing economic risks by combining advanced materials' performance advantages in specialized applications with silicon's cost-effectiveness for general computing functions, facilitating incremental adoption that scales with manufacturing capability development and market demand.
    
    VL  - 2
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Sections